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Abstract
In a previous paper (Corrigan–Sasaki), many remarkable properties of classical
Calogero and Sutherland systems at equilibrium are reported. For example, the
minimum energies, frequencies of small oscillations and the eigenvalues of Lax
pair matrices at equilibrium are all ‘integer valued’. The equilibrium positions
of Calogero and Sutherland systems for the classical root systems (Ar,Br , Cr
and Dr ) correspond to the zeros of Hermite, Laguerre, Jacobi and Chebyshev
polynomials. Here we define and derive the corresponding polynomials for
the exceptional (E6, E7, E8, F4 and G2) and non-crystallographic (I2(m),H3

and H4) root systems. They do not have orthogonality but share many other
properties with the above-mentioned classical polynomials.

PACS numbers: 02.20.−a, 02.30.Gp, 02.30.Ik

1. Introduction

The relationship between classical and quantum integrability has fascinated many physicists
and mathematicians. In a recent paper by Corrigan and Sasaki [1], this issue has been
extensively investigated in the framework of Calogero–Moser systems [2–4]. One major
result is that certain ‘quantized’ information seems to be encoded in the classical system. For
example, the eigenvalues of classical Lax pair matrices at the equilibrium points are ‘integer
valued’ [1]. The connection between the zeros of Hermite and Laguerre polynomials and the
equilibrium points ofAr andBr (Dr) Calogero systems has been known for many years [5–7].
In [1], it is found that the zeros of Jacobi polynomials are related to the equilibrium points
of BCr (Dr) Sutherland system. In the present paper, we define and derive the polynomials
associated with the equilibrium points of the other Calogero and Sutherland systems. These
are associated with Calogero systems based on non-crystallographic root systems, Calogero
and Sutherland systems based on the exceptional root systems and theAr Sutherland systems.
The Chebyshev polynomials (5.3) are associated with the Ar Sutherland systems.

0305-4470/02/398283+32$30.00 © 2002 IOP Publishing Ltd Printed in the UK 8283
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In general, the polynomials are determined by the potential, q2 + 1/q2 (the Calogero
system [2]) and 1/ sin2 q (the Sutherland system [3]), the root system� and the set of weights
R. For the classical root systems and for the (non-trivial) smallest dimensional R, that is
the set of vector weights V or the set of short roots �S , the polynomials turn out to be
classical orthogonal polynomials: Hermite, Laguerre, Jacobi and Chebyshev polynomials
[8]. The orthogonality does not hold for the polynomials for exceptional root systems
and for classical root systems with generic R. Like their classical counterparts, these new
polynomials have ‘integer coefficients’ only, if multiplied by a certain factor. In most cases,
it is possible to define the polynomials to be monic (that is, the highest degree term has unit
coefficient) and integer coefficients only. Some polynomials are too lengthy to be displayed
in the paper; an E8 polynomial has 121 terms and its typical integer coefficient has about
150 digits. They are presented in [9]. Some root systems are related by Dynkin diagram
foldings; A2r−1 → Cr,Dr+1 → Br,E6 → F4 and D4 → G2. These imply relations
among the corresponding Calogero–Moser systems at certain ratios of the coupling constants.
These, in turn, imply relations among the corresponding polynomials, which are determined
independently. These relations are either identities among classical polynomials, many of
which are ‘new’ in the sense that they are not listed in standard mathematical textbooks [8],
or they provide non-trivial checks for the newly derived polynomials. The significance and
other detailed properties of these new polynomials deserve further study.

This paper is organized as follows. In section two, a brief introduction to Calogero–
Moser systems is given to set the stage and notation. Equations for determining equilibrium
points are discussed in some detail. In section three, Coxeter (Weyl) invariant polynomials
associated with equilibrium positions are introduced for a set of weights R for Calogero
and Sutherland systems. For the rational potential (Calogero systems) the definition is almost
unique, whereas we have several choices of definitions of the polynomials for the trigonometric
potential (Sutherland system). Sections four and five are the main body of the paper. The
Coxeter (Weyl) invariant polynomials are determined and presented for all root systems �
and for major choices of R for Calogero (section four) and Sutherland systems (section five).
Section six is for summary and comments. We will present a heuristic argument for deriving
the classical orthogonal polynomials starting from the pre-potentials (2.4) of Calogero and
Sutherland systems.

2. Equilibrium in Calogero–Moser system

Let us start with a brief introduction of Calogero–Moser systems [2–4]. We stick to the
notation of a recent paper [1], unless otherwise mentioned. Calogero–Moser systems are
integrable multiparticle dynamical systems at the classical as well as quantum levels. They
have a long-range potential (rational, trigonometric, hyperbolic and elliptic) and the integrable
multiparticle interactions are governed by the root systems [10]. Classical integrability through
the Lax formalism is known for all potentials for classical root systems [10] as well as for
exceptional [11, 12] and non-crystallographic [12] root systems. Quantum integrability of
the systems having degenerate potentials (rational, trigonometric and hyperbolic) is now
systematically understood for all root systems in terms of the Dunkl operator formalism
[13, 14] and the quantum Lax pair formalism [15, 16]. With a system of r particles in one
dimension, we associate a root system � of rank r. This is a set of vectors in R

r invariant
under reflections in the hyperplane perpendicular to each vector in �:

� � sα(β) = β − (α∨ · β)α α∨ = 2α

α2
α, β ∈ �. (2.1)
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The set of reflections {sα|α ∈ �} generates a finite reflection group G�, known as a Coxeter
(or Weyl) group. Among Calogero–Moser systems the Calogero systems (with q2 + 1/q2

potential) and the Sutherland systems (with 1/ sin2q potential) have discrete energy eigenvalues
only when quantized. The Calogero and Sutherland systems have equilibrium positions,
which are characterized in two equivalent ways [1]. That is where the classical potential takes
the absolute minimum and simultaneously the ground-state wavefunction takes the absolute
maximum. At the equilibrium positions of the Calogero and Sutherland systems, associated
spin exchange models are defined for each root system, including the exceptional ones [17].
The best-known example is the Haldane–Shastry model which is based on Ar Sutherland
systems [18]. The integrability and the well-ordered spectrum of the spin exchange models
are closely related to the special properties of systems at equilibrium [1]. It is interesting to
investigate how knowledge of the polynomials obtained in this paper could be applied to the
study of spin exchange models, etc.

The classical Hamiltonians of the Calogero and Sutherland systems read3:

HC = 1

2
p2 + VC VC =



ω2

2
q2 +

1

2

∑
ρ∈�+

g2
ρρ

2

(ρ · q)2

1

2

∑
ρ∈�+

g2
ρρ

2

sin2(ρ · q) .
(2.2)

In these formulae, �+ is the set of positive roots and ω > 0 is the angular frequency of the
confining harmonic potential, (gρ > 0) are real coupling constants which are defined on orbits
of the corresponding Coxeter group, i.e., they are identical for roots in the same orbit. The
classical potential VC can be written succinctly in terms of a pre-potentialW [15]:

VC = 1

2

r∑
j=1

(
∂W

∂qj

)2

+ Ẽ0 (2.3)

in which

W =


−ω

2
q2 +

∑
ρ∈�+

gρ log |ρ · q|
∑
ρ∈�+

gρ log |sin(ρ · q)|
(2.4)

and Ẽ0 is the minimum energy. Let us recall that the pre-potentialW is related to the ground-
state wavefunction of the quantum theory φ0 by φ0 = eW (equation (2.6) of [1]), and that
W,VC and HC are Coxeter (Weyl) invariant:

HC(p, q) = HC(sα(p), sα(q)) W(q) = W(sα(q)) VC(q) = VC(sα(q))

(∀α ∈ �). (2.5)

The classical equilibrium point

p = 0 q = q̄ (2.6)

is determined by the equations [1]

∂VC

∂qj

∣∣∣∣
q̄

= 0 or equivalently
∂W

∂qj

∣∣∣∣
q̄

= 0 (j = 1, . . . , r). (2.7)

3 For � = BCr the trigonometric potential should read g2
M

∑
ρ∈�M+

1/ sin2(ρ · q) + 2g2
L

∑
ρ∈�L+

1/ sin2(ρ · q) +

gS(gS + 2gL)/2
∑
ρ∈�S+

1/ sin2(ρ · q), with ρ2
M = 2, ρ2

L = 4 and ρ2
S = 1.
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In other words, it is a minimal point of the classical potential VC , and simultaneously it is a
maximal point of the pre-potential W and of the ground-state wavefunction φ0 = eW , since
the matrix determining the frequencies of small oscillations around the equilibrium

∂2W

∂qj∂ql

∣∣∣∣
q̄

(j, l = 1, . . . , r) (2.8)

is negative definite [1]. The equilibrium points are not unique. There is one equilibrium point
in each Weyl chamber (alcove) [1], that is if q̄ is an equilibrium point, so is sρ(q̄),∀ρ ∈ �, due
to the Coxeter (Weyl) invariance of W (2.5). It is also easy to see that if q̄ is an equilibrium
point, so is −q̄ .

The equilibrium equation for the pre-potentialW , for Calogero systems based on simply
laced root systems, that is Ar,Dr ,Er, I2(odd) and Hr , reads:∑

ρ∈�+

ρ

ρ · q̄ = ω

g
q̄.

If we define a rescaled equilibrium point by

q̃ ≡
√
ω

g
q̄ (2.9)

it satisfies a simple equation independent of the coupling constant:∑
ρ∈�+

ρ

ρ · q̃ = q̃. (2.10)

For Calogero systems based on non-simply laced root systems, that is Br,Cr , F4,G2 and
I2(even)4, the equation reads:∑

ρ∈�L+

ρ

ρ · q̄ + k
∑
ρ∈�S+

ρ

ρ · q̄ = ω

gL
q̄ k ≡ gS

gL
.

Again a rescaled equilibrium point

q̃ ≡
√
ω

gL
q̄ (2.11)

satisfies a simple equation depending only on the ratio of the two coupling constants gS
and gL: ∑

ρ∈�L+

ρ

ρ · q̃ + k
∑
ρ∈�S+

ρ

ρ · q̃ = q̃ k ≡ gS

gL
. (2.12)

As is clear from (2.10) and (2.12), the equilibrium point q̃ (q̄) is independent of the
normalization of roots in �.

The situation is simpler in the Sutherland systems which do not have an extra parameter
ω. For crystallographic simply laced root systems, that is Ar,Dr and Er , the equation for q̄ is
independent of the coupling constant:∑

ρ∈�+

ρ cot(ρ · q̄) = 0. (2.13)

For crystallographic non-simply laced root systems, that is Br,Cr , F4 and G2, the equation
for q̄ depends only on the ratio of the two coupling constants gS and gL:∑

ρ∈�L+

ρ cot(ρ · q̄) + k
∑
ρ∈�S+

ρ cot(ρ · q̄) = 0 k ≡ gS

gL
. (2.14)

4 For I2(even) we have k ≡ ge/go.
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For the BCr system, which has three coupling constants gS, gM and gL for the short, middle
and long roots, the equation depends on two coupling ratios:∑
ρ∈�M+

ρ cot(ρ · q̄) + k1

∑
ρ∈�S+

ρ cot(ρ · q̄) + k2

∑
ρ∈�L+

ρ cot(ρ · q̄) = 0 k1 ≡ gS

gM

k2 ≡ gL

gM
. (2.15)

3. Polynomials

Here, we give the general definitions of the Coxeter (Weyl) invariant polynomials associated
with the equilibrium positions in Calogero and Sutherland systems. Naturally, the definitions
for the Calogero systems are different from those for the Sutherland systems except for the
common features that the polynomials are Coxeter (Weyl) invariant and are specified by the
root system � and a set of D vectors R

R = {µ(1), . . . , µ(D)|µ(a) ∈ R
r } (3.1)

which form a single orbit of the corresponding reflection (Weyl) groupG�. The set of values
at the equilibrium, {µ · q̄|µ ∈ R}, is Coxeter (Weyl) invariant. In this paper, we consider only
such R that are customarily used for Lax pairs. They are the set of roots � itself for simply
laced root systems, the set of long (short, middle) roots �L (�S,�M) for non-simply laced
root systems and the so-called sets of minimal weights. The latter is better specified by the
corresponding fundamental representations, which are all the fundamental representations of
Ar , the vector (V), spinor (S) and conjugate spinor (S̄) representations of Dr and 27 (27) of
E6 and 56 of E7.

For Calogero systems the definition is rather unique and is given by

PR
� (k|x) =

∏
µ∈R

(x − µ · q̃) (3.2)

in which k denotes the possible dependence on the ratio of the coupling constants, for
the systems based on non-simply laced root systems (2.12). It should be noted that the
above polynomial depends on the normalization of the vectors µ ∈ R implicitly. Changing
R → cR (µ → cµ) can be absorbed by rescaling x:

PcR� (k|x) =
∏
µ∈R

(x − cµ · q̃) = cDPR
� (k|x/c). (3.3)

For Sutherland systems we have several candidates for polynomials:

PR
�,s(k|x) =

∏
µ∈R

(x − sin(µ · q̄)) PR
�,s2(k|x) =

∏
µ∈R

(x − sin(2µ · q̄)) (3.4)

PR
�,c(k|x) =

∏
µ∈R

(x − cos(µ · q̄)) PR
�,c2(k|x) =

∏
µ∈R

(x − cos(2µ · q̄)) (3.5)

in which k denotes the possible dependence on the ratio(s) of coupling constants, as before.
Not all of them give interesting objects, as we will see presently. In all cases the polynomials
are monic and of degree D.

In the case R is even, that is,

µ ∈ R ⇐⇒ −µ ∈ R (3.6)
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then sometimes it is advantageous to consider PR
� (k|x), PR

�,s(k|x) and PR
�,s2(k|x) as

polynomials in y ≡ x2 of degreeD/2:∏
µ∈R+

(y − (µ · q̃)2)
∏
µ∈R+

(y − sin2(µ · q̄))
∏
µ∈R+

(y − sin2(2µ · q̄)) (3.7)

in which R+ is the positive part of R. In this case the ‘cosine’ polynomials PR
�,c(2)(k|x), (3.5),

should better be redefined as

P
R+
�,c(k|x) =

∏
µ∈R+

(x − cos(µ · q̄)) P
R+
�,c2(k|x) =

∏
µ∈R+

(x − cos(2µ · q̄)) (3.8)

since the original polynomials (3.5) are the squares of the new ones. It is easy to see that
PR
�,s(k|y) and PR+

�,c2(k|x) are equivalent:

PR
�,s(k|x) = (−2)−D/2PR+

�,c2(k|1 − 2x2). (3.9)

Likewise, for even R, PR
�,s2(k|x) is a ‘square’ of PR+

�,c2(k|x):

PR
�,s2(k|x) =

∏
µ∈R

(x − sin(2µ · q̄)) =
∏
µ∈R+

(x2 − sin2(2µ · q̄))

=
∏
µ∈R+

(u− cos(2µ · q̄))(−u− cos(2µ · q̄)) u2 ≡ 1 − x2

= P
R+
�,c2(k|u)PR+

�,c2(k| − u). (3.10)

The right-hand side is an even polynomial in u, thus it is a polynomial in u2 and in x2.
The change of variables u ↔ x corresponds to the change in the character of the variables,
cos ↔ sin. This imposes a quite non-trivial check for the s2 and c2 polynomials which are
determined separately.

As shown in the following sections, the polynomials associated with the classical root
systems (Ar,Br , Cr and Dr ) and I2(m) are either classical polynomials for the smallest
dimensionalR or those closely related to them (see, for example, (4.32), (4.33), (5.41), (5.42)).
For the exceptional and non-crystallographic root systems, the equilibrium positions are
evaluated numerically and the polynomials are obtained by rationalization of the coefficients
in terms of Mathematica. At each step, the result is verified by many consistency checks; the
‘integer eigenvalues’ of the matrix (2.8) for the values of q̄, the identities implied by Dynkin
diagram foldings and identities (3.10) for the polynomials. Let us conclude this section with
the important remark that these polynomials are independent of the specific representation of
the root and weight vectors. In other words, the polynomials are Coxeter (Weyl) invariant.

4. Calogero systems

Let us first discuss the systems based on classical root systems.

4.1. Ar

Equations (2.10) for� = Ar read

r+1∑
l=1
l 
=j

1

q̃j − q̃ l
= q̃j (j = 1, . . . , r + 1). (4.1)
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These determine
{
q̃j =

√
ω
g
q̄j
∣∣j = 1, . . . , r + 1

}
to be the zeros of the Hermite polynomial

Hr+1(x) [8], with the Rodrigues formula

Hn(x) = (−1)n ex
2

(
d

dx

)n
e−x2 = 2nxn + · · · . (4.2)

If ordered by value, q̃1 > q̃2 > · · · > q̃r+1 or reverse, they possess the symmetry

q̃j = −q̃r+2−j (4.3)

and especially q̃(r+2)/2 = 0 for r even. Thus we have

q̃1 + q̃2 + · · · + q̃r+1 = 0. (4.4)

4.1.1. R = V forAr . This case was reported by Calogero a quarter century ago [5]. The set
of weights of the vector representation is

V =
{
µj ≡ ej − 1

r + 1

r+1∑
l=1

el

∣∣∣∣∣ j = 1, . . . , r + 1

}
. (4.5)

Throughout this paper we denote an orthonormal basis of R
r (Rr+1 for the Ar case) by {ej }.

In this case, we have µj · q̃ = q̃j due to (4.4) and µ2 = r/(r + 1). Polynomial (3.2) is
given by the Hermite polynomial

PV
r (x) ≡ PV

Ar
(x) =

r+1∏
j=1

(x − q̃j ) = 2−(r+1)Hr+1(x). (4.6)

They are orthogonal to each other:∫ ∞

−∞
PV
r (x)P

V
s (x) e−x2

dx ∝ δrs. (4.7)

Needless to say, Hermite polynomials are of integer coefficients. It is interesting to note that
another definition

P 2V
Ar
(x) =

r+1∏
j=1

(x − 2q̃j ) = Hr+1(x/2) = 2r+1PV
Ar
(x/2) (4.8)

gives a monic polynomial with all integer coefficients.

4.1.2. R = Vi forAr. The set of weights of the ith fundamental representation (ith rank
anti-symmetric tensor representation, 1 � i � r) is

Vi = {
µj1 + · · · + µji

∣∣1 � j1 < · · · < ji � r + 1
}

D = Di ≡
(
r + 1

i

)
. (4.9)

The above V (4.5) is V = V1. In this case we have µ2 = i(r + 1 − i)/(r + 1). We can show
that the polynomial (3.2)

P
Vi

Ar
(x) =

∏
1�j1<···<ji�r+1

(
x − (

q̃j1 + · · · + q̃ji
)) = P

Vr+1−i
Ar

(x) (4.10)

can be expressed in terms of the coefficients of Hr+1(x) by the same method as given in
section 4.2.5, and P 2Vi

Ar
(x) gives a monic polynomial with integer coefficients.
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Here we report only on V2 because it seems that the other representations (3 � i � r−2)
do not provide any interesting results. (For lower rank r, the explicit forms of the polynomials
P

Vi

Ar
(x) can be found in [9].) Due to (4.3), equation (4.10) becomes

P
V2
Ar
(x) =

∏
1�j<l�r+1

(x − (q̃j + q̃l ))

=


x(r+1)/2

∏
1�j<l�(r+1)/2

(x2 − (q̃j − q̃l)
2)(x2 − (q̃j + q̃ l)2) r : odd

xr/2
r/2∏
j=1

(
x2 − q̃2

j

) ∏
1�j<l�r/2

(x2 − (q̃j − q̃l )
2)(x2 − (q̃j + q̃ l)

2) r : even.

(4.11)

Based on the fact that the zeros of Hermite and Laguerre polynomials are related as seen from
the formulae (4.23), this can be expressed by using the polynomials associated with the Br
Calogero systems in the following way:

P
V2
A2r−1

(x) = xrP
�L

Br
(1/2|x) P

V2
A2r
(x) = xr−1PV

A2r
(x)P

�L

Br
(3/2|x). (4.12)

The explicit forms of the functions P�L

Br
(k|x) for lower r are given in section 4.2.5.

4.1.3. R = � forAr . We have � = {±(ej − el)|1 � j < l � r + 1},D = r(r + 1) and
µ2 = 2. The polynomial has a factorized form:

P�Ar (x) =
∏

1�j<l�r+1

(x2 − (q̃j − q̃l)
2) =

{
x2 − 2 (r = 1)

x−r−1P 2V
Ar
(x)
(
P

V2
Ar
(x)
)2

(r � 2).
(4.13)

Another definition P 2�
Ar
(x) gives a monic polynomial with integer coefficients.

4.2. Br andDr

Assuming q̄j 
= 0, equations (2.12) for � = Br with k ≡ gS/gL read

r∑
l=1
l 
=j

1

q̃2
j − q̃2

l

+
k

2q̃2
j

= 1

2
(j = 1, . . . , r). (4.14)

They determine
{
q̃2
j = ω

gL
q̄2
j

∣∣j = 1, . . . , r
}

as the zeros of the associated Laguerre polynomial

L(α)r (x), with α = k − 1 = gS/gL − 1 [1, 8, 10]. The Rodrigues formula reads

L(α)n (x) = exx−α

n!

(
d

dx

)n
(e−xxn+α) = (−1)n

n!
xn + · · · . (4.15)

For the subcase with gS = 0, that is � = Dr,
{
q̃2
j = ω

gL
q̄2
j

∣∣j = 1, . . . , r
}

are the zeros of the
associated Laguerre polynomial [8, 10],

rL(−1)
r (x) = −xL(1)r−1(x) (4.16)

for which one of the q̃j is zero. This also means that the
{
q̃2
j

}
of Br for gS/gL = 2 or α = 1

are the same as the non-vanishing
{
q̃2
j

}
of Dr+1. This can be understood easily from the

Dynkin diagram folding Dr+1 → Br . We omit the Cr case, because Cr is obtained from Br
by interchanging the short (S) and long (L) roots.
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4.2.1. R = �S forBr . Since �S = {±ej |j = 1, . . . , r} is even, it is advantageous to
consider the polynomials in y ≡ x2, (3.7),

P�S

r (y) ≡ P
�S

Br
(k|x) =

r∏
j=1

(
x2 − q̃2

j

) = (−1)rr!L(α)r (y) α = k − 1 = gS/gL − 1.

(4.17)

They are orthogonal to each other:∫ ∞

0
P�S

r (y)P�S

s (y)yα e−y dy ∝ δrs. (4.18)

It should be stressed that P�S
r (y), a monic polynomial in y, is also a polynomial in the

parameter α with all integer coefficients.

4.2.2. R = V forDr . As in the previous example, V = {±ej |j = 1, . . . , r}, we introduce
(y ≡ x2, (3.7))

PV
r (y) ≡ PV

Dr
(x) =

r∏
j=1

(
x2 − q̃2

j

) = (−1)rr!L(−1)
r (y). (4.19)

They are orthogonal to each other:∫ ∞

0
PV
r (y)P

V
s (y)y

−1 e−y dy ∝
∫ ∞

0
L
(1)
r−1(y)L

(1)
s−1(y)y e−y dy ∝ δrs (4.20)

in which the identity (4.16) is used. Corresponding to the above-mentioned Dynkin diagram
foldingDr+1 → Br and (4.16), we obtain

x2P
�S

Br
(2|x) = PV

Dr+1
(x) = P

�S

Br+1
(0|x). (4.21)

4.2.3. A2r−1 → Cr and the relationship between Hermite and Laguerre polynomials. As is
well known the Dynkin diagram folding A2r−1 → Cr relates the A2r−1 Calogero system to
the Cr (Br) system with ω → 2ω, gS(gL) = 2g and gL(gS) = g, that is α = −1/2. This
would imply PV

A2r−1
(x) (4.6) is equal to P�S

Br
(1/2|x) (4.17):

PV
A2r−1

(x) = P
�S

Br
(1/2|x) (4.22)

which is equivalent to a well-known formula relating Hermite polynomials and Laguerre
polynomials (equation (5.6.1) of [8]):

H2r (x) = (−1)r22r r!L(−1/2)
r (x2) H2r+1(x) = (−1)r22r+1r!xL(1/2)r (x2). (4.23)

The former corresponds to k = 1/2 and (4.22). The latter corresponds to k = 3/2 and implies

PV
A2r
(x) = xP

�S

Br
(3/2|x). (4.24)

Let us recall the corresponding results in the trigonometric case [1, 8]. The polynomial
P
�S+
BCr,c2

(k1, k2|x) (5.20) is proportional to Jacobi polynomial P (α,β)r (x) with α = k1 + k2 − 1
and β = k2 − 1. For k1 = 0, k2 = 1/2 (k1 = 0, k2 = 3/2) it reduces to the Chebyshev
polynomial of the first (second) kind. As above, k1 = 0, k2 = 1/2 corresponds to the
A2r−1 → Cr folding.
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4.2.4. R = S and S̄ forDr. The spinor S and conjugate spinor S̄ representations of Dr are
minimal representations with D = 2r−1 and the natural normalization µ2 = r/4. For odd r,
we have the equality −S = S̄ which means P S

Dr
(x) = P S̄

Dr
(x) for odd r. In fact, the symmetry

of theDr Dynkin diagram implies that the same formula holds for even r, too. Here we present
P S
Dr
(x) for lower members of r:

P
S,S̄,V
D4

(x) = x2(−24 + 36x2 − 12x4 + x6) (4.25)

P
S,S̄
D5
(x) = 25 − 3400x2 + 13 900x4 − 20 200x6 + 12 730x8 − 3880x10

+ 580x12 − 40x14 + x16 (4.26)

P
S,S̄
D6
(x) = 2−16(951 356 390 625 − 24 582 413 628 000x2 + 229 552 540 380 000x4

− 1001 859 665 040 000x6 + 2271 780 895 320 000x8

− 2992 279 237 056 000x10 + 2465 846 485 977 600x12

− 1332 743 493 888 000x14 + 486 926 396 352 000x16

− 122 431 951 872 000x18 + 21 351 239 884 800x20 − 2577 889 198 080x22

+ 212 745 830 400x24 − 11 668 684 800x26 + 403 046 400x28

− 7864 320x30 + 65 536x32). (4.27)

The equality of the three polynomials for V,S and S̄ in D4, (4.25) reflects the three-fold
symmetry of the D4 Dynkin diagram.

4.2.5. R = �L forBr and Dr . The set of long roots of Br is �L = {±(ej − el),±(ej +
el)|1 � j < l � r}. The polynomial P�L

Br
(k|x) can be expressed neatly in terms of the

coefficients of the polynomial P�S

Br
(k|x) (4.17). Suppose we have two polynomials in y:

f =
n∏
i=1

(
y − x2

i

) =
n∑
i=0

(−1)iaiy
n−i (4.28)

g =
∏

1�i<j�n
(y − (xi − xj )

2)(y − (xi + xj )
2). (4.29)

Let us denote bi = x2
i , then we obtain g as a symmetric polynomial in bi :

g =
∏

1�i<j�n
(y2 − 2(bi + bj )y + (bi − bj )

2) (4.30)

and {ai} are the basis of the symmetric polynomials in bi :

ai =
∑

1�j1<···<ji�n
bj1 · · · bji . (4.31)

Thus g can be expressed in terms of the coefficients {ai} of f with integer coefficients. For
example,

n = 2: g = y2 − 2a1y + a2
1 − 4a2 (4.32)

n = 3: g = y6 − 4a1y
5 + 2

(
3a2

1 − a2
)
y4 − 2

(
2a3

1 − a1a2 − 13a3
)
y3

+
(
a4

1 + 2a2
1a2 − 7a2

2 − 24a1a3
)
y2 − 2

(
a2

1 − 3a2
)
(a1a2 − 9a3)y

+ a2
1a

2
2 − 4a3

2 − 4a3
1a3 + 18a1a2a3 − 27a2

3. (4.33)

If f is of rational coefficients, so is g.
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We list P�L

Br
(k|x) for lower members of r. This includesP�Dr (x) as a special case of k = 0.

As remarked before, they are presented as polynomials in y ≡ x2:

P
�L

B2
(k|x) = 4(1 + k)− 4(1 + k)y + y2 (4.34)

P
�L

B3
(k|x) = 108(1 + k)(2 + k)2 − 324(1 + k)(2 + k)2y + 9(2 + k)2(41 + 32k)y2

− 4(2 + k)(99 + 88k + 16k2)y3 + 6(2 + k)(17 + 8k)y4

− 12(2 + k)y5 + y6 (4.35)

P
�L

B4
(k|x) = 27 648(1 + k)(2 + k)2(3 + k)3 − 165 888(1 + k)(2 + k)2(3 + k)3y

+ 4608(2 + k)2(3 + k)3(91 + 82k)y2

− 512(2 + k)(3 + k)3(2282 + 2777k + 792k2)y3

+ 192(2 + k)(3 + k)2(15 462 + 20 235k + 8336k2 + 1088k3)y4

− 768(2 + k)(3 + k)2(2085 + 2167k + 688k2 + 64k3)y5

+ 64(3 + k)2(17 634 + 22 113k + 9480k2 + 1536k3 + 64k4)y6

− 768(3 + k)2(342 + 327k + 96k2 + 8k3)y7

+ 48(3 + k)(2514 + 2465k + 784k2 + 80k3)y8

− 64(3 + k)(186 + 123k + 20k2)y9 + 240(3 + k)2y10 − 24(3 + k)y11 + y12.

(4.36)

As remarked above, P�L

Br
(k|x) is a polynomial in y and in k with all integer coefficients

and is monic in y. The explicit forms of the polynomials P�L

Br
(k|x) (r = 5, 6) and P�Dr (x)

(r = 4, 5, 6) can be found in [9]. The Dynkin diagram folding Dr+1 → Br relates the
polynomials

P
�L

Br
(2|x)(P�S

Br
(2|x))2 = P�Dr+1

(x) = P
�L

Br+1
(0|x) (4.37)

which is the root version of the identity (4.21).
Next we discuss the systems based on the exceptional root systems. For these we have

relied on the numerical evaluation of the equilibrium points by Mathematica. Large enough
digits of precision are maintained in internal computations, e.g., we keep 2048 digits for the
E8 Sutherland system. We have verified in each case that the fit of the polynomial with rational
coefficients gives no detectable errors within the working precision.

4.3. Er

The E series of the root systems, E6, E7 and E8, are simply laced. The corresponding
polynomials do not contain any coupling constants.

4.3.1. R = 27 and� for E6. Polynomials for 27 and �,

P 27
E6
(x) =

∏
µ∈27

(x − µ · q̃) (µ2 = 4/3, ρ2 = 2) (4.38)

P�E6
(x) =

∏
ρ∈�

(x − ρ · q̃) (ρ2 = 2) (4.39)
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are slightly simplified for a different normalization of µ ∈ R:

P
√

1/3 27
E6

(x) = 3−27/2P 27
E6
(
√

3x) =
∏
µ∈27

(x − µ̂ · q̃) (µ̂ = µ/
√

3, µ̂2 = 4/9)

= x3(200 − 3600x2 + 24 600x4 − 83 980x6 + 162 945x8

− 192 840x10 + 144 876x12 − 70 416x14 + 22 170x16 − 4440x18

+ 540x20 − 36x22 + x24) (4.40)

P
√

1/3�
E6

(x) = 3−36P�E6
(
√

3x) =
∏
ρ∈�

(x − ρ̂ · q̃) (ρ̂ = ρ/
√

3, ρ̂2 = 2/3)

= (81 920 − 1474 560x2 + 8970 240x4 − 22 749 184x6

+ 28 505 088x8 − 19 829 760x10 + 8239 872x12 − 2128 896x14 + 346 944x16

− 35 328x18 + 2160x20 − 72x22 + x24)(200 − 3600x2 + 24 600x4 − 83 980x6

+ 162 945x8 − 192 840x10 + 144 876x12 − 70 416x14 + 22 170x16 − 4440x18

+ 540x20 − 36x22 + x24)2. (4.41)

It is interesting to note that the second factor of P�E6
(x), (4.41), is the same as P 27

E6
(x)/x3,

which is the same polynomial appearing in (4.40) and (4.47). Again it should be stressed that
these polynomials are monic and all the coefficients are integers.

4.3.2. R = 56 forE7. Polynomial for 56,

P 56
E7
(x) =

∏
µ∈56

(x − µ · q̃) (µ2 = 3/2, ρ2 = 2) (4.42)

is slightly simplified for a different normalization of µ:

P
√

2 56
E7

(x) = 228P 56
E7
(x/

√
2) =

∏
µ∈56

(x − µ̂ · q̃) (µ̂ =
√

2µ, µ̂2 = 3)

= 2044 117 922 661 550 386 613 265 625

− 48 583 441 852 490 416 903 125 286 500x2

+ 403 943 437 764 362 721 049 483 097 250x4

− 1594 876 299 784 237 542 505 579 618 500x6

+ 3423 181 532 874 686 547 792 360 316 875x8

− 4470 973 846 715 160 163 197 028 791 000x10

+ 3844 463 042 762 881 314 328 636 794 900x12

− 2298 706 753 677 324 429 083 230 164 600x14

+ 994 190 889 968 661 674 517 540 390 225x16

− 320 292 296 385 170 629 680 242 995 500x18

+ 78 600 569 652 362 205 629 789 205 150x20

− 14 948 636 823 173 617 875 192 068 460x22

+ 2232 949 785 098 933 644 991 402 715x24

− 264 680 665 744 227 895 592 493 840x26

+ 25 089 285 771 398 909 108 223 000x28

− 1912 398 423 761 929 885 120 080x30
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+ 117 632 735 062 147 883 037 411x32 − 5848 529 412 061 451 267 964x34

+ 234 966 118 304 680 273 854x36 − 7609 794 291 104 570 460x38

+ 197 734 877 929 087 065x40 − 4090 765 650 038 424x42

+ 66 612 822 142 356x44 − 839 599 815 096x46 + 7991 799 795x48

− 55 327 860x50 + 261 954x52 − 756x54 + x56. (4.43)

4.3.3. R = � forE7 and E8. The polynomials P�E7
(x) and P�E8

(x) are too long to be
displayed here. See [9] for explicit forms. It should be stressed that five monic polynomials in

x, P
√

1/3 27
E6

(x) (4.40) (and P 27
E6
(x) (4.38)), P�E6

(x) (4.41), P
√

2 56
E7

(x) (4.43), P�E7
(x) and P�E8

(x)

have integer coefficients only.

4.4. F4

The theory has two coupling constants gL and gS for the long
(
ρ2
L = 2

)
and short

(
ρ2
S = 1

)
roots. We present the polynomials as a function of k ≡ gS/gL.

4.4.1. R = �L forF4

PL4 (k|y) ≡ P
�L

F4
(k|x) =

∏
ρ∈�L

(x − ρ · q̃) =
∏
ρ∈�L+

(y − (ρ · q̃)2) (
ρ2
L = 2

)
= 746 496(1 + k)6(2 + k)2(1 + 2k)− 4478 976(1 + k)6(2 + k)2(1 + 2k)y

+ 124 416(1 + k)5(2 + k)2(1 + 2k)(91 + 64k)y2 − 13 824(1 + k)5(2 + k)(2282

+ 6049k + 3712k2 + 512k3)y3 + 15 552(1 + k)4(2 + k)(1718 + 5027k + 4288k2

+ 1024k3)y4 − 20 736(1 + k)4(2 + k)(695 + 1472k + 704k2)y5

+ 1728(1 + k)3(5878 + 16 235k + 14 408k2 + 4096k3)y6

− 62 208(1 + k)3(38 + 71k + 32k2)y7 + 432(1 + k)2(838 + 1627k + 784k2)y8

− 576(1 + k)2(62 + 61k)y9 + 2160(1 + k)2y10 − 72(1 + k)y11 + y12. (4.44)

4.4.2. R = �S forF4

PS4 (k|y) ≡ P
�S

F4
(k|x) =

∏
ρ∈�S

(x − ρ · q̃) =
∏
ρ∈�S+

(y − (ρ · q̃)2) (
ρ2
S = 1

)
= 729k3(1 + k)6(2 + k)(1 + 2k)2/4 − 2187k2(1 + k)6(2 + k)(1 + 2k)2y

+ 243k(1 + k)5(2 + k)(1 + 2k)2(64 + 91k)/2y2

− 27(1 + k)5(1 + 2k)(512 + 3712k + 6049k2 + 2282k3)y3

+ 243(1 + k)4(1 + 2k)(1024 + 4288k + 5027k2 + 1718k3)/4y4

− 162(1 + k)4(1 + 2k)(704 + 1472k + 695k2)y5

+ 27(1 + k)3(4096 + 14 408k + 16 235k2 + 5878k3)y6

− 1944(1 + k)3(32 + 71k + 38k2)y7 + 27(1 + k)2(784 + 1627k + 838k2)y8

− 72(1 + k)2(61 + 62k)y9 + 540(1 + k)2y10 − 36(1 + k)y11 + y12. (4.45)

They are related to each other reflecting the self-duality of the F4 root system. If one replaces
k by 1/k and y by y/(2k) in PS4 (k|y), one obtains PL4 (k|y)/(2k)12:

PL4 (k|y) = (2k)12PS4 (1/k|y/2k) or P
�L

F4
(k|x) = (2k)12P

�S

F4
(1/k|x/

√
2k).

(4.46)
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It is well known thatF4 with the coupling ratio k = gS/gL = 2 is obtained fromE6 by folding.
This relates F4 polynomials to E6 polynomials:

P
�S

F4
(2|x) = P 27

E6
(x)/x3 P

�L

F4
(2|x)(P�S

F4
(2|x))2 = P�E6

(x). (4.47)

Both of them have trigonometric counterparts as will be shown later (5.64)–(5.66). The two

polynomialsP�L

F4
(k|x) and P

√
2�S

F4
(k|x) have integer coefficients only. This property seems to

be inherited from E6, too.

4.5. G2

The theory has two coupling constants gL and gS for the long
(
ρ2
L = 2

)
and short

(
ρ2
S = 2/3

)
roots. We present the polynomials as a function of k ≡ gS/gL.

4.5.1. R = �L forG2

PL2 (k|y) ≡ P
�L

G2
(k|x) =

∏
ρ∈�L

(x − ρ · q̃) =
∏
ρ∈�L+

(y − (ρ · q̃)2) (
ρ2
L = 2

)
= −27(1 + k)2/2 + 81(1 + k)2/4y − 9(1 + k)y2 + y3. (4.48)

4.5.2. R = �S forG2

PS2 (k|y) ≡ P
�S

G2
(k|x) =

∏
ρ∈�S

(x − ρ · q̃) =
∏
ρ∈�S+

(y − (ρ · q̃)2) (
ρ2
S = 2/3

)
= −k(1 + k)2/2 + 9(1 + k)2/4y − 3(1 + k)y2 + y3. (4.49)

They are related to each other reflecting the self-duality of the G2 root system:

PL2 (k|y) = (3k)3PS2 (1/k|y/3k) or P
�L

G2
(k|x) = (3k)3P�S

G2
(1/k|x/

√
3k). (4.50)

The G2 Calogero system with the coupling ratio k = gS/gL = 3 is obtained from that of D4

by the three-fold foldingD4 → G2. This implies analogous relations to (4.47)

P
�S

G2
(3|x) = PR

D4
(x)/x2 (R = V,S, S̄) P

�L

G2
(3|x)(P�S

G2
(3|x))3 = P�D4

(x). (4.51)

Both of them have trigonometric counterparts, too, as will be shown later. The two polynomials

P
√

2�L

G2
(k|x) andP

√
2�S

G2
(k|x) have integer coefficients only. This property seems to be inherited

fromD4.
Thirdly, let us discuss the systems based on non-crystallographic root systems.

4.6. I2(m)

The equilibrium points are easily obtained when parametrized by the two-dimensional polar
coordinates [1]:

q̄ = (q̄1, q̄2) = r̄(sin ϕ̄, cos ϕ̄) (4.52)

r̄2 = mg

ω
ϕ̄ = π

2m
(m: odd)

(4.53)

r̄2 = m(ge + go)

2ω
tan

mϕ̄

2
=
√
ge

go
(m: even)
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in which g is the coupling constant in the simply laced odd m theory, whereas go (ge) is the
coupling constant for odd (even) roots in the non-simply laced even m theory. As R we choose
the set of the vertices of the regular m-gon Rm on which the dihedral group I2(m) acts:

Rm = {(cos(2jπ/m + t0), sin(2jπ/m + t0)) ∈ R
2|j = 1, . . . ,m}

t0 = π/2m (m: odd) t0 = 0 (m: even). (4.54)

The polynomial
∏
µ∈Rm(x − µ · q̃) (3.2) is obtained trivially:

Pm(x) ≡ P
Rm
I2(m)

(x) =
∏
µ∈Rm

(x − µ · q̃) =
m∏
j=1

(
x − sin

(
2jπ

m
+
ϕ0

m

))
(4.55)

in which

ϕ0 = π (m: odd) ϕ0 = 2 arctan
√
k k ≡ ge/go (m: even). (4.56)

For odd m,Pm(x) is proportional to the Chebyshev polynomial of the first kind Tm(x) (see
(5.4)). For even m and for the equal coupling ge = go, Pm(x) is also proportional to the
Chebyshev polynomial Tm(x) and thus the entire {Pm(x) = 21−mTm(x)} constitute orthogonal
polynomials [1]. For the generic coupling ge 
= go the orthogonality no longer holds. This
can be seen most easily by the explicit forms of the lower members of Peven in the non-singular
limiting cases, ge = 0 and go = 0:

ge = 0 : x2, x2(x2 − 1), x2(x2 − 3/4)2, x2(x2 − 1/2)2(x2 − 1), . . .

go = 0 : x2 − 1, (x2 − 1/2)2, (x2 − 1)(x2 − 1/4)2, (x4 − x2 + 1/8)2, . . .
(4.57)

which have definite sign in −1 < x < 1.
The following equivalences are well known: A2 ≡ I2(3), B2 ≡ I2(4) and G2 ≡ I2(6).

The I2(3) polynomial corresponds to the A2 polynomial of vector V,

P
R3
I2(3)

(x) = 1
4T3(x) = 1

16
√

2
H3(

√
2x) = P

V/
√

2
A2

(x). (4.58)

As for the I2(4) polynomial, we obtain from (4.55)

P
R4
I2(4)

(x) = x4 − x2 +
k

4(1 + k)
k ≡ ge/go. (4.59)

For the B2 system, the Laguerre polynomial with α = k − 1 ≡ ge/go − 1 reads

L
(α)

2 (y) = 1
2y

2 − (k + 1)y + k(1 + k)/2 α = k − 1.

They are proportional to each other upon identification y = 2(1 + k)x2. The I2(6) polynomial
obtained from (4.55) reads, after some calculation,

P
R6
I2(6)

(x) = x6 − 3

2
x4 +

9

16
x2 − k

16(1 + k)
k = ge/go (4.60)

which is proportional to PS2 (k|y) (4.49) upon the same identification as above y = 2(1 + k)x2.

4.7. H3 and H4

The non-crystallographicH3 and H4 are simply laced root systems. In both cases, the roots
are normalized to 2, as with the other simply laced root systems, ρ2 = 2. Then both monic
polynomials P�H3

(x) and P�H4
(x) have integer coefficients only.
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4.7.1. R = � forH3

P�3 (y) ≡ P�H3
(x) =

∏
ρ∈�

(x − ρ · q̃) =
∏
ρ∈�+

(y − (ρ · q̃)2) (ρ2 = 2)

= (−450 + 225y − 30y2 + y3)(5625 − 22 500y + 27 000y2 − 9600y3 + 1200y4

− 60y5 + y6)(22 500 − 67 500y + 46 125y2

− 11 700y3 + 1275y4 − 60y5 + y6). (4.61)

4.7.2. R = � forH4

P�4 (y) ≡ P�H4
(x) =

∏
ρ∈�

(x − ρ · q̃) =
∏
ρ∈�+

(y − (ρ · q̃)2) (ρ2 = 2)

= (656 100 000 000 − 1093 500 000 000y + 601 425 000 000y2

− 154 305 000 000y3 + 21 343 500 000y4 − 1701 000 000y5 + 80 392 500y6

− 2250 000y7 + 36 000y8 − 300y9 + y10)(747 338 906 250 000 000 000

− 9964 518 750 000 000 000 000y + 45 172 485 000 000 000 000 000y2

− 90 926 233 593 750 000 000 000y3 + 92 928 548 278 125 000 000 000y4

− 52 841 916 742 500 000 000 000y5 + 18 358 385 767 875 000 000 000y6

− 4169 745 135 000 000 000 000y7 + 648 844 128 590 625 000 000y8

− 71 483 472 810 000 000 000y9 + 5707 114 499 700 000 000y10

− 335 580 296 625 000 000y11 + 14 683 267 406 250 000y12

− 480 384 270 000 000y13 + 11 739 694 500 000y14 − 212 600 700 000y15

+ 2804 085 000y16 − 26 100 000y17 + 162 000y18 − 600y19 + y20)

×(1362 025 156 640 625 000 000 000 000 000 000

− 20 430 377 349 609 375 000 000 000 000 000 000y

+ 110 664 543 977 050 781 250 000 000 000 000 000y2

− 280 672 524 028 933 593 750 000 000 000 000 000y3

+ 406 550 434 997 274 609 375 000 000 000 000 000y4

− 377 089 903 500 479 578 125 000 000 000 000 000y5

+ 240 385 775 914 964 970 703 125 000 000 000 000y6

− 110 467 977 515 351 929 687 500 000 000 000 000y7

+ 37 879 740 110 299 305 937 500 000 000 000 000y8

− 9947 615 045 119 592 062 500 000 000 000 000y9

+ 2041 289 604 408 317 542 031 250 000 000 000y10

− 332 506 194 678 726 581 250 000 000 000 000y11

+ 43 529 340 095 868 749 062 500 000 000 000y12

− 4624 592 400 554 729 343 750 000 000 000y13

+ 401 746 375 286 214 215 625 000 000 000y14

− 28 701 181 376 029 878 750 000 000 000y15

+ 1693 173 350 921 514 750 000 000 000y16

− 82 699 244 991 680 625 000 000 000y17

+ 3348 318 244 893 890 625 000 000y18 − 112 349 936 407 545 000 000 000y19
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+ 3118 565 868 993 450 000 000y20 − 71 352 951 283 125 000 000y21

+ 1337 980 766 062 500 000y22 − 20 388 872 475 000 000y23

+ 249 452 622 000 000y24 − 2408 494 500 000y25

+ 17 897 422 500y26 − 98 550 000y27 + 378 000y28 − 900y29 + y30). (4.62)

5. Sutherland systems

Let us first discuss the systems based on the classical root systems.

5.1. Ar

The equilibrium position is ‘equally-spaced’ (see equation (5.14) of [1]) and translational
invariant. We choose the constant shift such that the coordinate of ‘centre of mass’ vanishes,∑r+1

j=1 q̄j = 0:

q̄j = π(r + 1 − j)

r + 1
− πr

2(r + 1)
= π

2
− π(2j − 1)

2(r + 1)
= −q̄r+2−j (j = 1, . . . , r + 1). (5.1)

5.1.1. R = V forAr . For the vector weight µj ∈ V (4.5), µj · q̄ is independent of the
constant shift of q̄ . The above choice (5.1) leads to

µj · q̄ = π

2
− π(2j − 1)

2(r + 1)
= q̄j −π

2
< µj · q̄ < π

2
(j = 1, . . . , r + 1). (5.2)

In this case the polynomial (3.4) is given by

PV
r (x) ≡ PV

Ar ,s
(x) =

r+1∏
j=1

(x − sin(µj · q̄)) =
r+1∏
j=1

(
x − cos

π(2j − 1)

2(r + 1)

)
= 2−rTr+1(x).

(5.3)

Here Tn(cosϕ) = cos(nϕ) is the Chebyshev polynomial of the first kind, whose Rodrigues
formula is

Tn(x) = (−1)n

(2n− 1)!!
(1 − x2)1/2

(
d

dx

)n
(1 − x2)n−1/2 = 2n−1xn + · · · . (5.4)

They are orthogonal to each other:∫ 1

−1

PV
r (x)P

V
s (x)√

1 − x2
dx ∝ δrs. (5.5)

This relation between the classical equilibrium point of the Ar Sutherland model and the
Chebyshev polynomial is a new result. Another definition

PV′
Ar ,s
(x) =

r+1∏
j=1

(x − 2 sin(µj · q̄)) = 2Tr+1(x/2) = 2r+1PV
Ar ,s
(x/2) (5.6)

provides a monic polynomial with all integer coefficients.
It is easy to see that

PV
Ar ,c
(x) =

r+1∏
j=1

(x − cos(µj · q̄)) =
r+1∏
j=1

(
x − sin

π(2j − 1)

2(r + 1)

)
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does not give rational polynomials, for example, PV
A1,c

(x) = x2 − √
2x + 1/2. In fact, in most

cases the polynomial PR
�,c(x) is not of rational coefficients. In the rest of this paper we will

not consider this type of polynomial.
The other polynomials

PV
Ar ,s2(x) =

r+1∏
j=1

(x − sin(2µj · q̄)) =
r+1∏
j=1

(
x − sin

π(2j − 1)

r + 1

)

PV
Ar ,c2(x) =

r+1∏
j=1

(x − cos(2µj · q̄)) =
r+1∏
j=1

(
x + cos

π(2j − 1)

r + 1

)
are essentially the same as PV

Ar ,s
(x), (5.3). Only the constant term can be different:

PV
Ar ,s2(x)− PV

Ar ,s
(x) = −2−r sin

πr

2
PV
Ar ,c2(x)− PV

Ar ,s
(x) = (−1)r+12−r . (5.7)

Thus we consider only the polynomial PR
Ar ,s
(x) = ∏

µ∈R
(x − sin(µ · q̄)) for various R of Ar .

5.1.2. R = Vi forAr . From (4.9) and (5.2), the polynomial (3.4) is given by

P
Vi

Ar ,s
(x) =

∏
1�j1<···<ji�r+1

(
x − sin

(
q̄j1 + · · · + q̄ji

)) = P
Vr+1−i
Ar ,s

(x). (5.8)

This polynomial can be expressed in terms of the coefficients of Tr+1(x) by the same method as
given in section 5.2.5, and 2DiPVi

Ar ,s
(x/2) gives a monic polynomial with integer coefficients.

See [9] for the explicit forms of the polynomials PVi

Ar ,s
(x) of lower rank r.

As in the Calogero case, we report only on V2:

P
V2
Ar ,s
(x) =

∏
1�j<l�r+1

(x − sin(q̄j + q̄l ))

=


x(r+1)/2 ∏

1�j<l�(r+1)/2
(x2 − sin2(q̄j − q̄l))(x

2 − sin2(q̄j + q̄ l)) r: odd

xr/2
r/2∏
j=1
(x2 − sin2 q̄j )

∏
1�j<l�r/2

(x2 − sin2(q̄j − q̄l))(x
2 − sin2(q̄j + q̄l )) r: even.

(5.9)

Based on the fact that the zeros of Chebyshev and Jacobi polynomials are related as seen from
the formulae (5.28) and (5.29), this can be expressed by using the polynomials associated with
the BCr Sutherland systems in the following way:

P
V2
A2r−1,s

(x) = 2−r(r−1)xrP
�M+
BCr ,c2

(0, 1/2|1 − 2x2) (5.10)

P
V2
A2r ,s

(x) = 2−r(r−1)xr−1PV
A2r ,s

(x)P
�M+
BCr,c2

(1, 1/2|1 − 2x2). (5.11)

The explicit forms of the functions P�M+
BCr ,c2

(k1, k2|x) for lower r are given in section 5.2.5.

5.1.3. R = � forAr . The polynomial has a factorized form:

P�Ar ,s(x) =
∏

1�j<l�r+1

(x2 − sin2(q̄j − q̄ l)) =
{
x2 − 1 (r = 1)

x−r−1PV
Ar ,s2

(x)
(
P

V2
Ar ,s
(x)
)2

(r � 2).
(5.12)
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It is elementary to evaluate P�Ar ,s(x) for lower rank:

P�Ar ,s (x) =
∏

1�j<l<r+1

(
x2 − sin2

(
π(l − j)

r + 1

))
P�A1,s

(x) = x2 − 1

P�A2,s
(x) = 2−6(4x2 − 3)3

P�A3,s
(x) = 2−4(x2 − 1)2(2x2 − 1)4

P�A4,s
(x) = 2−20(5 − 20x2 + 16x4)5

P�A5,s
(x) = 2−24(x2 − 1)3(4x2 − 1)6(4x2 − 3)6

P�A6,s
(x) = 2−42(−7 + 56x2 − 112x4 + 64x6)7.

For r = 1, 3 and 5, P�Ar ,s (x) are of definite sign in −1 < x < 1. They can never be orthogonal
to each other for whichever choice of the positive definite weight function.

5.2. BCr andDr

As shown in [1], equations (2.7) for � = BCr read

−2gM

r∑
l=1
l 
=j

sin 2q̄j
cos 2q̄j − cos 2q̄l

+ gS
cos q̄j
sin q̄j

+ 2gL
cos 2q̄j
sin 2q̄j

= 0 (j = 1, . . . , r). (5.13)

For non-vanishing gS and gL, sin 2q̄j = 0 cannot satisfy the above equation. Thus dividing
by sin 2q̄j we obtain for k1 ≡ gS/gM, k2 ≡ gL/gM :

r∑
l=1
l 
=j

1

x̄j − x̄l
+

k1 + k2

2(x̄j − 1)
+

k2

2(x̄j + 1)
= 0 (j = 1, . . . , r) (5.14)

in which x̄j ≡ cos 2q̄j . These are the equations satisfied by the zeros {x̄j |j = 1, . . . , r} of the
Jacobi polynomial P (α,β)r (x) [8] with

α = k1 + k2 − 1 β = k2 − 1. (5.15)

The Rodrigues formula for the Jacobi polynomial P (α,β)n (x) reads

P (α,β)n (x) = (−1)n

2nn!
(1 − x)−α(1 + x)−β

(
d

dx

)n
((1 − x)n+α(1 + x)n+β)

= 1

2nn!

�(2n + α + β + 1)

�(n + α + β + 1)
xn + · · · . (5.16)

For � = Dr , we have gS = gL = 0, implying α = β = −1. We choose

q̄1 = 0 q̄r = π/2 (⇐⇒ cos 2q̄1 = 1 cos 2q̄r = −1)

then (2.7) read
r−1∑
l=2
l 
=j

1

x̄j − x̄l
+

1

x̄j − 1
+

1

x̄j + 1
= 0 (j = 2, . . . , r − 1) (5.17)

in which x̄j ≡ cos 2q̄j (j = 2, . . . , r − 1). These are the equations satisfied by the zeros
{x̄j |j = 2, . . . , r − 1} of the Jacobi polynomial P (1,1)r−2 (x) [8]. In fact, there is an identity

4P (−1,−1)
r (x) = (x2 − 1)P (1,1)r−2 (x) (5.18)
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which means that {1, x̄2, . . . , x̄r−1,−1} are the zeros of P (−1,−1)
r (x). This allows us to treat

Dr as a limiting case of BCr .
The possible R for BCr are �S,�M and �L. Since �S = {±ej |j = 1, . . . , r} and

�L = {±2ej |j = 1, . . . , r}, we have trivial identities among the polynomials

P
�L

BCr,s
(k1, k2|x) = P

�S

BCr,s2
(k1, k2|x) P

�L

BCr ,c
(k1, k2|x) = P

�S

BCr ,c2
(k1, k2|x). (5.19)

In other words, these relations prompted us to introduce the polynomials of the forms∏
µ∈R (x − sin(2µ · q̄)) and

∏
µ∈R (x − cos(2µ · q̄)). For the BCr Sutherland system we

consider R = �S and �M only.

5.2.1. R = �S forBCr . Since �S is even and {x̄j = cos 2q̄j |j = 1, . . . , r} are the zeros of
the Jacobi polynomial, it is natural to consider the polynomial (3.8)

P
�S+
BCr,c2

(k1, k2|x) =
r∏
j=1

(x − cos 2q̄j ) = 2r r!
�(r + α + β + 1)

�(2r + α + β + 1)
P (α,β)r (x) (5.20)

with α = k1 + k2 − 1 and β = k2 − 1. They are orthogonal to each other:∫ 1

−1
P (α,β)r (x)P (α,β)s (x)(1 − x)α(1 + x)β dx ∝ δrs. (5.21)

As remarked in (3.9), the polynomial P�S+
BCr ,c2

(k1, k2|x) is equivalent to P
�S

BCr ,s
(k1, k2|x).

Needless to say, 2nn!P (α,β)n (x) is a polynomial in the parameters α and β with integer
coefficients. Thus P�S+

BCr ,c2(k1, k2|x) (5.20) is a rational function in α and β with integer
coefficients.

The other polynomial P�S

BCr ,s2
(k1, k2|x) can easily be obtained by (3.10):

P
�S

BCr,s2
(k1, k2|x) =

r∏
j=1

(x2 − sin2(2q̄j ))

= (−1)r
(

2r r!
�(r + α + β + 1)

�(2r + α + β + 1)

)2

P (α,β)r (u)P (β,α)r (u) (5.22)

in which u2 = 1 − x2. Remark that P (α,β)r (−x) = (−1)rP (β,α)r (x).

5.2.2. R = V forDr . This is a special (k1 = k2 = 0 or α = β = −1) case of the previous
example. As in the previous example, we introduce

PV+
r (x) ≡ P

V+
Dr ,c2

(x) =
r∏
j=1

(x − cos 2q̄j ) = 2r r!(r − 2)!

(2r − 2)!
P (−1,−1)
r (x)

= (x + 1)(x − 1)
r−1∏
j=2

(x − x̄j ) = 2r−2r!(r − 2)!

(2r − 2)!
(x + 1)(x − 1)P (1,1)r−2 (x). (5.23)

They are orthogonal to each other:∫ 1

−1
PV+
r (x)PV+

s (x)(1 − x)−1(1 + x)−1 dx ∝
∫ 1

−1
P
(1,1)
r−2 (x)P

(1,1)
s−2 (x)(1 − x)(1 + x) dx ∝ δrs.

(5.24)
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Corresponding to the Dynkin diagram foldingDr+1 → Br and (5.23), we obtain

(x − 1)P�S+
BCr,c2(2, 0|x) = P

V+
Dr+1,c2(x) = P

�S+
BCr+1,c2(0, 0|x) (5.25)

which is the trigonometric counterpart of (4.21).
The other polynomial PV

Dr ,s2
(x) has a simple form

PV
Dr ,s2(x) =

r∏
j=1

(x2 − sin2(2q̄j ))

= (−1)r
(

2r−1r!(r − 2)!

(2r − 2)!

)2

x4 (P (1,1)r−2 (u)
)2
∣∣∣
u2→1−x2

(5.26)

which is of definite sign in −1 < x < 1. Thus they do not form any orthogonal polynomials.

5.2.3. A2r−1 → Cr and the relationship between Chebyshev and Jacobi polynomials. As in
the Calogero case, the Dynkin diagram folding A2r−1 → Cr implies

PV
A2r−1,s

(x) = (−2)−rP�S+
BCr,c2

(0, 1/2|1 − 2x2). (5.27)

Indeed, there are relations between Chebyshev and Jacobi polynomials:

21−2rT2r (x) = (−1)r
r!(r − 1)!

(2r − 1)!
P (−1/2,−1/2)
r (1 − 2x2) (5.28)

2−2rT2r+1(x) = (−1)r
(r!)2

(2r)!
xP (1/2,−1/2)

r (1 − 2x2) (5.29)

on top of the well-known relations (equation (4.1.7) of [8]):
1 · 3 · · · (2r − 1)

2 · 4 · · · 2r
Tr(x) = P (−1/2,−1/2)

r (x).

The former corresponds to (5.27) and the latter implies

PV
A2r ,s

(x) = (−2)−rxP�S+
BCr,c2

(1, 1/2|1 − 2x2). (5.30)

5.2.4. R = S and S̄ for Dr . As in the Calogero systems, the symmetry of the Dr Dynkin
diagram implies that P S

Dr ,a
(x) = P S̄

Dr ,a
(x), a = s, c, s2, c2. Among them P

S,S̄
Dr ,c

(x) do not

always give rational polynomials. As remarked above (3.9), P S,S̄
Dr ,s

(x) are equivalent to

P
S+,S̄+
Dr ,c2

(x) for even rank r. Thus we list for lower rank r the polynomials P S+,S̄+
Dr ,c2

(x) and

P
S,S̄
Dr ,s2

(x):

P
V+,S+,S̄+
D4,c2 (x) = (x2 − 1)(x2 − 1/5) (5.31)

P
V,S,S̄
D4,s2

(x) = x4(x2 − 4/5)2 (5.32)

P
S,S̄
D5,c2

(x) = (x2 − 1/2)4(x4 − x2 − 1/196)2 (5.33)

P
S,S̄
D5,s2

(x) = (x2 − 1/2)4(x4 − x2 − 1/196)2 (5.34)

P
S+,S̄+
D6,c2

(x) = 3−47−3x4(21x4 − 28x2 + 8)2(63x4 − 72x2 + 16) (5.35)

P
S,S̄
D6,s2

(x) = 3−87−6(x2 − 1)4(21x4 − 14x2 + 1)4(63x4 − 54x2 + 7)2. (5.36)

It is interesting to note that the formula (3.10) applies to D5 (conjugate) spinor representation
S (S̄), which is not even. This is because the set of values {µ · q̄|µ ∈ S} is even. Moreover,
the function in (5.33) is invariant under x2 → 1 − x2.
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5.2.5. R = �M forBCr . The set of middle roots is�M = {±(ej − el),±(ej + el)|1 � j <

l � r}. As in the Calogero systems in section 4.2.5, the polynomial P�M

BCr ,s
(k1, k2|x) can be

expressed neatly in terms of the coefficients of the polynomial P�S

BCr ,s
(k1, k2|x). Suppose we

have two polynomials in y:

f =
n∏
i=1

(y − sin2 xi) =
n∑
i=0

(−1)iaiyn−i (5.37)

g =
∏

1�i<j�n
(y − sin2(xi − xj ))(y − sin2(xi + xj )). (5.38)

Let us denote bi = sin2 xi , then we obtain g as a symmetric polynomial in bi :

g =
∏

1�i<j�n
(y2 − 2(bi + bj − 2bibj )y + (bi − bj )

2) (5.39)

and {ai} are the basis of the symmetric polynomials in bi :

ai =
∑

1�j1<···<ji�n
bj1 · · · bji . (5.40)

Thus g can be expressed in terms of the coefficients {ai} of f with integer coefficients. For
example,

n = 2: g = y2 − 2(a1 − 2a2)y + a2
1 − 4a2 (5.41)

n = 3: g = y6 − 4(a1 − a2)y
5 + 2

(
3a2

1 − a2 − 4a1a2 − 12a3 + 8a1a3
)
y4

− 2
(
2a3

1 − a1a2 − 13a3 − 2a2
1a2 − 4a2

2 − 2a1a3 + 32a2a3 − 32a2
3

)
y3

+
(
a4

1 + 2a2
1a2 − 7a2

2 − 24a1a3 − 8a1a
2
2 − 16a2

1a3 + 120a2a3 + 16a1a2a3

− 144a2
3

)
y2 − 2

(
a3

1a2 − 3a1a
2
2 − 9a2

1a3 + 27a2a3 − 2a3
2 − 2a3

1a3 + 18a1a2a3

− 54a2
3

)
y + a2

1a
2
2 − 4a3

2 − 4a3
1a3 + 18a1a2a3 − 27a2

3. (5.42)

If f is of rational coefficients, so is g.
Here are some explicit forms of P�M

BCr ,s
(k1, k2|x) for lower rank r (see also [9]):

P
�M

BC2,s
(k1, k2|x) = 4(1 + k2)(1 + k1 + k2)

(1 + k1 + 2k2)(2 + k1 + 2k2)2
− 4(1 + k2)(1 + k1 + k2)

(1 + k1 + 2k2)(2 + k1 + 2k2)
y + y2

(5.43)

P
�M

BC3,s
(k1, k2|x) = 108(1 + k2)(2 + k2)

2(1 + k1 + k2)(2 + k1 + k2)
2

(2 + k1 + 2k2)2(3 + k1 + 2k2)3(4 + k1 + 2k2)4

− 108(1 + k2)(2 + k2)
2(1 + k1 + k2)(2 + k1 + k2)

2(10 + 3k1 + 6k2)

(2 + k1 + 2k2)2(3 + k1 + 2k2)3(4 + k1 + 2k2)4
y

+
9(2 + k2)

2(2 + k1 + k2)
2

(2 + k1 + 2k2)2(3 + k1 + 2k2)2(4 + k1 + 2k2)4

(
164 + 196k1 + 41k2

1

+ 392k2 + 292k1k2 + 32k2
1k2 + 292k2

2 + 96k1k
2
2 + 64k3

2

)
y2

− 4(2 + k2)(2 + k1 + k2)

(2 + k1 + 2k2)2(3 + k1 + 2k2)2(4 + k1 + 2k2)3

(
792 + 1278k1 + 639k2

1

+ 99k3
1 + 2556k2 + 3088k1k2 + 1052k2

1k2 + 88k3
1k2 + 3088k2

2 + 2562k1k
2
2

+ 504k2
1k

2
2 + 16k3

1k
2
2 + 1708k3

2 + 832k1k
3
2 + 64k2

1k
3
2 + 416k4

2 + 80k1k
4
2 + 32k5

2

)
y3
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+
6(2 + k2)(2 + k1 + k2)(26 + 17k1 + 34k2 + 8k1k2 + 8k2

2)

(2 + k1 + 2k2)(3 + k1 + 2k2)(4 + k1 + 2k2)2
y4

− 12(2 + k2)(2 + k1 + k2)

(3 + k1 + 2k2)(4 + k1 + 2k2)
y5 + y6. (5.44)

5.2.6. R = � forDr . These are the k1 = 0 and k2 = 0 limits of the formulae given in the
previous subsection.

P
�+
D4,c2

(x) = (1 + x)3(−3/5 + x)(−1/5 + x2)4 (5.45)

P�D4,s2(x) = x6(−4/5 + x2)8(−16/25 + x2) (5.46)

P
�+
D5,c2

(x) = x4(1 + x)3(−1/7 + x)(−4/7 + x2)2(−3/7 + x2)4 (5.47)

P�D5,s2(x) = (−1 + x2)4x6(−4/7 + x2)8(−3/7 + x2)4(−48/49 + x2) (5.48)

P
�+
D6,c2

(x) = 3−97−7(1 + x)4(−3 − 14x + 21x2)(1 − 14x2 + 21x4)4(7 − 54x2 + 63x4)2

(5.49)

P�D6,s2(x) = 3−187−14x8(8 − 28x2 + 21x4)8(16 − 72x2 + 63x4)4(128 − 560x2 + 441x4).

(5.50)

It is trivial to verify that (3.10) are satisfied:

P�Dr ,s2(x) = P
�+
Dr ,c2

(u) P
�+
Dr ,c2

(−u)
∣∣∣
u2→1−x2

. (5.51)

The Dynkin diagram foldingDr+1 → Br relates the functions

P
�M+
BCr,c2

(2, 0|x)(P�S+
BCr,c2

(2, 0|x))2 = P
�+
Dr+1,c2

(x) = P
�M+
BCr+1,c2

(0, 0|x) (5.52)

which is the trigonometric counterpart of the identity (4.37).
Next we discuss the systems based on the exceptional root systems. As in the Calogero

systems, we have relied on numerical evaluation of the equilibrium points.

5.3. Er

5.3.1. R = 27 and� for E6. We have evaluated two polynomials independently:

P 27
E6,c2(x) =

∏
µ∈27

(x − cos(2µ · q̄))

= (−1 + x)3(1 + 2x)6

21874116
(−743 − 42 651x + 708 939x2 − 1704 045x3

− 1890 504x4 + 7043 652x5 + 1260 336x6 − 9391 536x7 + 4174 016x9)2

(5.53)

and

P 27
E6,s2(x) =

∏
µ∈27

(x − sin(2µ · q̄))

= x3(−3 + 4x2)3

21874116
(−221 709 312 + 39 409 774 992x2 − 786 312 492 840x4

+ 6804 048 466 593x6 − 32 072 860 850 184x8 + 89 147 361 696 624x10

− 149 154 571 577 088x12 + 147 001 580 732 160x14 − 78 400 843 057 152x16

+ 17 422 409 568 256x18). (5.54)
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Although the set of minimal weights 27 is not even, that is −27 = 27 
= 27, these two
polynomials are related. The ‘formula (3.10)’ is valid,

P 27
E6,s2(x) =

√
P 27
E6,c2

(u)

√
P 27
E6,c2

(−u)
∣∣∣∣
u2→1−x2

. (5.55)

This is the same situation encountered in the D5 (conjugate) spinor representations S (S̄) in
(5.33). This provides a strong support for the above results.

As for R = �, we have

P
�+
E6,c2

(x) =
∏
ρ∈�+

(x − cos(2ρ · q̄)) = (2x + 1)6

224771111
(−235 − 627x + 231x2 + 847x3)

×(−743 − 42 651x + 708 939x2 − 1704 045x3 − 1890 504x4

+ 7043 652x5 + 1260 336x6 − 9391 536x7 + 4174 016x9)3 (5.56)

P�E6,s2(x) =
∏
ρ∈�+

(x2 − sin(2ρ · q̄)) = (−3 + 4x2)6

2487141122
(−48 384 + 422 928x2 − 1036 728x4

+ 717 409x6)(−221 709 312 + 39 409 774 992x2 − 786 312 492 840x4

+ 6804 048 466 593x6 − 32 072 860 850 184x8 + 89 147 361 696 624x10

− 149 154 571 577 088x12 + 147 001 580 732 160x14 − 78 400 843 057 152x16

+ 17 422 409 568 256x18)3. (5.57)

5.3.2. R = 56 forE7. We have evaluated two polynomials independently:

P
56+
E7,c2

(x) =
∏
µ∈56+

(x − cos(2µ · q̄))

= x4

114135176
(9332 954 265 600 − 345 319 307 827 200x2

+ 5422 446 428 313 600x4 − 47 902 580 312 348 160x6

+ 266 584 469 614 182 720x8 − 991 356 255 189 780 480x10

+ 2543 382 104 409 514 368x12 − 4564 307 435 286 703 104x14

+ 5717 674 981 551 733 200x16 − 4899 020 276 961 851 040x18

+ 2736 363 552 042 360 240x20 − 897 719 270 582 318 184x22

+ 131 214 258 464 743 597x24) (5.58)

and

P 56
E7,s2(x) =

∏
µ∈56

(x − sin(2µ · q̄))

= (−1 + x2)4

11813101712
(7824 285 157 − 1019 921 980 260x2 + 44 927 774 191 218x4

− 933 762 748 148 260x6 + 10 512 912 980 210 355x8

− 70 729 109 671 077 000x10 + 302 444 017 343 367 900x12

− 850 322 103 495 681 960x14 + 1590 230 624 766 864 795x16

− 1957 192 223 677 842 580x18 + 1521 592 634 309 937 618x20

− 676 851 830 994 604 980x22 + 131 214 258 464 743 597x24)2. (5.59)
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These two polynomials satisfy (3.10)

P 56
E7,s2(x) = P

56+
E7,c2

(u)P
56+
E7,c2

(−u)
∣∣∣
u2→1−x2

. (5.60)

5.3.3. R = � forE7 and E8. The polynomials P�Er ,s(2)(x), P
�+
Er,c2

(x), r = 7, 8 are too long
to be displayed here. Their degrees are 63 and 126 for E7 and 120 and 240 for E8. They are
given in [9]. They all satisfy the consistency condition (3.10)

P�Er ,s2(x) = P
�+
Er ,c2

(u)P
�+
Er,c2

(−u)
∣∣∣
u2→1−x2

(r = 6, 7, 8) (5.61)

at the level of each factor.

5.4. F4

We present the polynomials as a function of k ≡ gS/gL. The polynomials P�L+,�S+
F4,c2

(k|x) and

P
�L,�S

F4,s2
(k|x), satisfying the condition (3.10), are too lengthy to be displayed here. They are

given in [9]. Here we give P�L,�S

F4,s
(k|x) which have shorter forms. As before we use y = x2.

5.4.1. R = �L forF4

PL4,s(k|y) ≡ P
�L

F4,s
(k|x) =

∏
ρ∈�L

(x − sin(ρ · q̄)) =
∏
ρ∈�L+

(y − sin2(ρ · q̄))

= 21236(1 + k)6(2 + k)2(3 + k)3(1 + 2k)

(3 + 2k)3(4 + 3k)4(5 + 3k)5(6 + 5k)6

− 21336(1 + k)6(2 + k)2(3 + k)3(1 + 2k)(14 + 9k)

(3 + 2k)3(4 + 3k)4(5 + 3k)5(6 + 5k)6
y

+
21136(1 + k)5(2 + k)2(3 + k)3(1 + 2k)(232 + 346k + 123k2)

(3 + 2k)2(4 + 3k)4(5 + 3k)5(6 + 5k)6
y2

− 21134(1 + k)5(2 + k)(3 + k)3

(3 + 2k)2(4 + 3k)4(5 + 3k)5(6 + 5k)6
(30 432 + 133 672k + 211 560k2

+ 155 726k3 + 54 075k4 + 7128k5)y3 +
2836(1 + k)4(2 + k)(3 + k)2

(3 + 2k)2(4 + 3k)3(5 + 3k)4(6 + 5k)6

×(19 296 + 90 360k+ 159 652k2 + 137 582k3 + 61 155k4 + 13 264k5 + 1088k6)y4

− 2934(1 + k)4(2 + k)(3 + k)2

(3 + 2k)2(4 + 3k)3(5 + 3k)4(6 + 5k)6
(283 824 + 1395 972k + 2711 556k2

+ 2704 381k3 + 1489 217k4 + 447 066k5 + 65 952k6 + 3456k7)y5

+
2734(1 + k)3(3 + k)2

(3 + 2k)2(4 + 3k)3(5 + 3k)3(6 + 5k)6
(1046 592 + 6283 632k + 15 907 184k2

+ 22 205 264k3 + 18 708 264k4 + 9754 573k5 + 3088 726k6 + 553 392k7

+ 47 232k8 + 1152k9)y6 − 2834(1 + k)3(3 + k)2

(3 + 2k)2(4 + 3k)2(5 + 3k)3(6 + 5k)5
(35 736

+ 163 412k + 300 546k2 + 286 499k3 + 151 260k4 + 43 412k5 + 6048k6

+ 288k7)y7 +
864(1 + k)2(3 + k)

(3 + 2k)(4 + 3k)2(5 + 3k)2(6 + 5k)4
(33 120 + 130 392k

+ 199 564k2 + 150 034k3 + 57 649k4 + 10 632k5 + 720k6)y8
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− 1152(1 + k)2(3 + k)

(3 + 2k)(4 + 3k)2(5 + 3k)2(6 + 5k)3
(3312 + 10 668k + 12 946k2 + 7313k3

+ 1899k4 + 180k5)y9 +
144(1 + k)2(3 + k)(116 + 133k + 30k2)

(3 + 2k)(4 + 3k)(5 + 3k)(6 + 5k)2
y10

− 72(1 + k)(3 + k)

(5 + 3k)(6 + 5k)
y11 + y12. (5.62)

5.4.2. R = �S forF4

PS4,s(k|y) ≡ P
�S

F4,s
(k|x) =

∏
ρ∈�S

(x − sin(ρ · q̄)) =
∏
ρ∈�S+

(y − sin2(ρ · q̄))

= 729k3(1 + k)6(2 + k)(3 + k)(1 + 2k)2

(3 + 2k)2(4 + 3k)3(5 + 3k)3(6 + 5k)5

− 2916k2(1 + k)6(2 + k)(3 + k)(1 + 2k)2(9 + 7k)

(3 + 2k)2(4 + 3k)3(5 + 3k)3(6 + 5k)5
y

+
1458k(1 + k)5(2 + k)(3 + k)(1 + 2k)2(48 + 115k + 58k2)

(3 + 2k)2(4 + 3k)2(5 + 3k)3(6 + 5k)5
y2

− 324(1 + k)5(3 + k)(1 + 2k)

(3 + 2k)2(4 + 3k)2(5 + 3k)3(6 + 5k)5

×(1152 + 11 712k + 33 125k2 + 38 811k3 + 20 104k4 + 3804k5)y3

+
729(1 + k)4(1 + 2k)(1536+8960k+17 519k2+15 049k3+5788k4+804k5)

(3 + 2k)(4 + 3k)2(5 + 3k)3(6 + 5k)4
y4

− 324(1 + k)4(1 + 2k)

(3 + 2k)(4 + 3k)2(5 + 3k)3(6 + 5k)4
(26 496 + 112 704k + 177 478k2

+ 130 823k3 + 45 354k4 + 5913k5)y5 +
162(1 + k)3

(3 + 2k)(4 + 3k)2(5 + 3k)3(6 + 5k)3

×(37 824 + 208 304k + 455 436k2 + 505 691k3

+ 300 828k4 + 90 935k5 + 10 902k6)y6

− 324(1 + k)3(9984 + 42 832k + 70 360k2 + 55 311k3 + 20 783k4 + 2978k5)

(3 + 2k)(4 + 3k)2(5 + 3k)2(6 + 5k)3
y7

+
54(1 + k)2(4224 + 13 765k + 16 027k2 + 7876k3 + 1380k4)

(3 + 2k)(4 + 3k)(5 + 3k)2(6 + 5k)2
y8

− 72(1 + k)2(2 + k)(345 + 628k + 276k2)

(3 + 2k)(4 + 3k)(5 + 3k)(6 + 5k)2
y9

+
36(1 + k)2(52 + 29k)

(4 + 3k)(5 + 3k)(6 + 5k)
y10 − 36(1 + k)

(6 + 5k)
y11 + y12. (5.63)

The folding E6 → F4 relates E6 polynomials to F4 polynomials at the coupling ratio
k ≡ gS/gL = 2. We have corresponding to (4.47)

P
�S

F4,s2
(2|x) = P 27

E6,s2(x)/x
3 P

�S

F4,c2
(2|x) = P 27

E6,c2(x)/(x − 1)3 (5.64)

P
�L

F4,a
(2|x)(P�S

F4,a
(2|x))2 = P�E6,a

(x) (a = s, s2) (5.65)

P
�L+
F4,c2

(2|x)(P�S+
F4,c2

(2|x))2 = P
�+
E6,c2

(x). (5.66)
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The self-duality of the F4 Dynkin diagram relates �L polynomials to �S ones. For example,
we obtain

847PL4,s(2|y)
847y3 − 1386y2 + 594y − 27

= 64PS4,s(2|y)
(4y − 3)3

(5.67)

717 409PL4,s2(2|y)
717 409y3 − 1036 728y2 + 422 928y − 48 384

= 64PS4,s2(2|y)
(4y − 3)3

(5.68)

847P�L+
F4,c2

(2|x)
847x3 + 231x2 − 627x − 235

= 8P�S+
F4,c2

(2|x)
(2x + 1)3

(5.69)

which are factors of the parent polynomials P�E6,s
, P�E6,s2 and P�+

E6,c2, respectively.

5.5. G2

Two types of polynomials
∏
ρ∈R+

(x − cos(2ρ · q̄)) and
∏
ρ∈R (x − sin(2ρ · q̄)) are evaluated.

For the latter we use y = x2.

5.5.1. R = �L forG2

P
�L+
G2,c2

(k|x) =
∏
ρ∈�L+

(x − cos(2ρ · q̄)) = 27 − 81k − 99k2 + 107k3 + 80k4 − 16k5

2(2 + k)2(3 + 2k)3

+
3(27 − 81k2 − 40k3 + 16k4)

2(2 + k)(3 + 2k)3
x +

3(3 + 2k − 2k2)

(2 + k)(3 + 2k)
x2 + x3 (5.70)

PL2,s2(k|y) ≡ P
�L

G2,s2
(k|x) =

∏
ρ∈�L

(x − sin(2ρ · q̄)) =
∏
ρ∈�L+

(y − sin2(2ρ · q̄))

= − 729(1 + k)2(−3 + k + 8k2)
2

4(2 + k)4(3 + 2k)5

+
729(1 + k)2(6 + 13k + 8k2)(9 − 6k + 13k2 + 8k3)

4(2 + k)3(3 + 2k)6
y

− 27(1 + k)(9 + 12k + 13k2 + 8k3)

(2 + k)2(3 + 2k)3
y2 + y3. (5.71)

5.5.2. R = �S forG2

P
�S+
G2,c2

(k|x) =
∏
ρ∈�S+

(x − cos(2ρ · q̄))

= −9 − 21k − 13k2 + k3

2(2 + k)(3 + 2k)2
+

3(−3 − 4k + k2)

2(2 + k)(3 + 2k)
x +

3k

3 + 2k
x2 + x3 (5.72)

PS2,s2(k|y) ≡ P
�S

G2,s2(k|x) =
∏
ρ∈�S

(x − sin(2ρ · q̄)) =
∏
ρ∈�S+

(y − sin2(2ρ · q̄))

= − 27(−3 + k)2k(1 + k)2

4(2 + k)(3 + 2k)4
+

27(1 + k)2(9 + 12k + k2 + 2k3)

4(2 + k)2(3 + 2k)3
y

− 9(1 + k)(3 + 2k + k2)

(2 + k)(3 + 2k)2
y2 + y3. (5.73)
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They satisfy the formula (3.10)

P
�L

G2,s2
(x) = P

�L+
G2,c2

(u)P
�L+
G2,c2

(−u)
∣∣∣
u2→1−x2

(5.74)
P
�S

G2,s2(x) = P
�S+
G2,c2(u)P

�S+
G2,c2(−u)

∣∣∣
u2→1−x2

.

The Dynkin diagram foldingD4 → G2 implies

P
�S+
G2,c2

(3|x) = P
R+
D4,c2

(x)/(x − 1) P
�S

G2,s2
(3|x) = PR

D4,s2(x)/x
2 (R = V,S, S̄)

(5.75)

P
�L

G2,a
(3|x)(P�S

G2,a
(3|x))3 = P�D4,a

(x) (a = s, s2) (5.76)

P
�L+
G2,c2(3|x)(P�S+

G2,c2(3|x))3 = P
�+
D4,c2(x) (5.77)

which correspond to (4.51). The self-duality of the G2 Dynkin diagram relates P�L

G2,s(2)
(3|x)

and P�S

G2,s(2)
(3|x) (see [9] for P�L,S

G2,s
(k|x)):

5PL2,s(3|y)
5y − 1

= PS2,s(3|y)
y − 1

25PL2,s2(3|y)
25y − 16

= PS2,s2(3|y)
y

(5.78)

5P�L+
G2,c2

(3|x)
5x − 3

= P
�S+
G2,c2

(3|x)
x + 1

(5.79)

which are a factor of the parent polynomials, P�D4,s
, P�D4,s2

and P�+
D4,c2

, respectively.

6. Summary and comments

We have derived Coxeter (Weyl) invariant polynomials associated with equilibrium points in
Calogero and Sutherland systems based on all root systems. For the classical root systems, the
polynomials are well-known classical orthogonal polynomials; Hermite, Laguerre, Chebyshev
and Jacobi of degree equal to the rank r of the root system (r + 1 for the Ar case), when
the smallest set of weights R is chosen. For the other choices of R, the polynomials are
related to the corresponding classical polynomials but they no longer form an orthogonal set.
For the exceptional and non-crystallographic root systems, these polynomials are new. Some
polynomials are given in [9], since they are too lengthy to be displayed in this paper. These new
polynomials have (much) higher degree than the rank r; 27 and 36 forE6, 28 and 63 forE7, 120
for E8, 12 for F4, 3 for G2,m for I2(m), 15 for H3 and 60 for H4. Defined only for sporadic
degrees, these new polynomials do not have the orthogonality property, except for those
corresponding to the dihedral group I2(m) with uniform coupling g = ge = go. In this case
Chebyshev polynomials are obtained [1].

All these new polynomials share one remarkable property with the classical polynomials;
their coefficients are rational functions of the ratio of the coupling constants with all integer
coefficients. In most cases, they are monic polynomials with integer coefficients only. It is an
interesting problem to clarify the meaning of these integers. For example, the constant term
of the polynomial with R = � is related to the Macdonald conjecture (proved by Opdam)
[19]. We will report on this problem in future.

In the rest of this section, we give a heuristic argument for ‘deriving’ the classical
orthogonal polynomials with the proper weight function from the pre-potential W (2.4) at
equilibrium. We add one degree of freedom, a new coordinate qr+1 (qr+2 for Ar ), to the rank r
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system at equilibrium:

W(q1, . . . , qr) → W̃ (qr+1) = W(q̄1, . . . , q̄r , qr+1) (6.1)

and consider (rescaled) qr+1 as the new variable. This is allowed only for the classical root
systems in which r can be any positive integer. Since V of Ar+2 has one more element µr+2

than that of Ar , and �S of Br+1 (BCr+1) has two more elements er+1 and −er+1 than that of
Br (BCr), we multiply

√
dqr+2 for the Ar case and (

√
dqr+1)

2 = dqr+1 for the Br (BCr) case,
see (6.4), (6.7), (6.10) and (6.13).

6.1. Hermite

The pre-potential for the Ar Calogero system is

W = −1

2
ωq2 + g

∑
1�j<l�r+1

log(qj − ql).

After rescaling

qr+2 =
√
g

ω
z (6.2)

we obtain from (6.1)

W̃ (z)/g = −1

2
z2 +

r+1∑
j=1

log

(
z−

√
ω

g
q̄j

)
+ (z-indep.). (6.3)

If we extract a function ψr+1(z) from

eW̃/g
√

dqr+2 = (z-indep.)× e−z2/2
r+1∏
j=1

(
z−

√
ω

g
q̄j

)
× √

dz

= (z-indep.)× e−z2/2Hr+1(z)
√

dz

= ψr+1(z)
√

dz (6.4)

it satisfies the orthogonality relation∫ ∞

−∞
dzψn(z)ψm(z) ∝ δn,m.

6.2. Laguerre

The pre-potential for the Br Calogero system is

W = −1

2
ωq2 + gL

∑
1�j<l�r

log((qj − ql)(qj + ql)) + gS

r∑
j=1

log qj .

After rescaling

qr+1 =
√
gL

ω
z (6.5)

we obtain from (6.1)

W̃(z)/gL = −1

2
z +

r∑
j=1

log

(
z−

(√
ω

gL
q̄j

)2
)

+
k

2
log z + (z-indep.) k ≡ gS/gL.

(6.6)
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If we extract a function ψr(z) from

eW̃/gLdqr+1 = (z-indep.)× zk/2 e−z/2
r∏
j=1

(
z−

(√
ω

gL
q̄j

)2
)

× z−1/2 dz

= (z-indep.)× zα/2 e−z/2L(α)r (z) dz

= ψr(z) dz α ≡ k − 1 (6.7)

it satisfies the orthogonality relation∫ ∞

0
dzψn(z)ψm(z) ∝ δn,m.

6.3. Chebyshev

This is slightly contrived. The pre-potential for the Ar Sutherland system is

W = g
∑

1�j<l�r+1

log sin(qj − ql).

By the choice of q̄ (5.1) and its property q̄j = −q̄r+2−j , after defining

sin qr+2 = z (6.8)

we obtain from (6.1)

W̃ (z)/g =
r+1∑
j=1

log(z− sin q̄j ) + (z-indep.). (6.9)

If we extract a function ψr+1(z) from

eW̃/g
√

dqr+2 = (z-indep.)×
r+1∏
j=1

(z− sin q̄j )× (1 − z2)−1/4
√

dz

= (z-indep.)× (1 − z2)−1/4Tr+1(z)
√

dz

= ψr+1(z)
√

dz (6.10)

it satisfies the orthogonality relation∫ 1

−1
dzψn(z)ψm(z) ∝ δn,m.

6.4. Jacobi

The pre-potential for the BCr Sutherland system is

W = gM
∑

1�j<l�r
log(sin(qj − ql) sin(qj + ql)) +

r∑
j=1

(gS log sin qj + gL log sin 2qj ).

After defining z by

cos 2qr+1 = z (6.11)

we obtain from (6.1) (k1 ≡ gS/gM, k2 ≡ gL/gM)

W̃(z)/gM =
r∑
j=1

log(z− cos 2q̄j ) +
k1 + k2

2
log(1 − z) +

k2

2
log(1 + z) + (z-indep.). (6.12)
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If we extract a function ψr(z) from

eW̃/gM dqr+1 = (z-indep.)× (1 − z)(k1+k2)/2(1 + z)k2/2
r∏
j=1

(z− cos 2q̄j )× (1 − z2)−1/2 dz

= (z-indep.)× (1 − z)α/2(1 + z)β/2P (α,β)r (z) dz

= ψr(z) dz α ≡ k1 + k2 − 1 β ≡ k2 − 1 (6.13)

it satisfies the orthogonality relation∫ 1

−1
dzψn(z)ψm(z) ∝ δn,m.
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